
Computer Graphics using OpenGL, 
3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 2
Initial Steps in Drawing 

Figures

S. M. Lea
University of North Carolina at Greensboro

© 2007, Prentice Hall



Using Open-GL

• Files: .h, .lib, .dll
– The entire folder gl is placed in the Include 

directory of Visual C++
– The individual lib files are placed in the lib 

directory of Visual C++
– The individual dll files are placed in 

C:\Windows\System32



Using Open-GL (2)
• Includes:

– <windows.h>
– <gl/gl.h>
– <gl/glu.h>
– <gl/glut.h>
– <gl/glui.h> (if used)

• Include in order given. If you use capital 
letters for any file or directory, use them in 
your include statement also.



Using Open-GL (3)

• Changing project settings: Visual C++ 6.0
– Project menu, Settings entry
– In Object/library modules move to the end of 

the line and add glui32.lib glut32.lib glu32.lib 
opengl32.lib (separated by spaces from last 
entry and each other)

– In Project Options, scroll down to end of box 
and add same set of .lib files

– Close Project menu and save workspace



Using Open-GL (3)

• Changing Project Settings: Visual C++ 
.NET 2003
– Project, Properties, Linker, Command Line
– In the white space at the bottom, add 

glui32.lib glut32.lib glu32.lib opengl32.lib 
– Close Project menu and save your solution



Getting Started Making Pictures

• Graphics display: Entire screen (a); 
windows system (b); [both have usual 
screen coordinates, with y-axis down]; 
windows system [inverted coordinates] (c)



Basic System Drawing Commands

• setPixel(x, y, color)
– Pixel at location (x, y) gets color specified by 

color
– Other names: putPixel(), SetPixel(), or 

drawPoint()
• line(x1, y1, x2, y2) 

– Draws a line between (x1, y1) and (x2, y2)
– Other names: drawLine() or Line().



Alternative Basic Drawing

• current position (cp), specifies where the 
system is drawing now.

• moveTo(x,y) moves the pen invisibly to the 
location (x, y) and then updates the 
current position to this position. 

• lineTo(x,y) draws a straight line from the 
current position to (x, y) and then updates 
the cp to (x, y).



Example: A Square
• moveTo(4, 4); //move 

to starting corner
• lineTo(-2, 4);
• lineTo(-2, -2);
• lineTo(4, -2);
• lineTo(4, 4); //close 

the square



Device Independent Graphics and 
OpenGL

• Allows same graphics program to be run 
on many different machine types with 
nearly identical output.
– .dll files must be with program 

• OpenGL is an API: it controls whatever 
hardware you are using, and you use its 
functions instead of controlling the 
hardware directly.

• OpenGL is open source (free).



Event-driven Programs
• Respond to events, such as mouse click 

or move, key press, or window reshape or 
resize. System manages event queue.

• Programmer provides “call-back” functions 
to handle each event.

• Call-back functions must be registered 
with OpenGL to let it know which function 
handles which event.

• Registering function does *not* call it!



Skeleton Event-driven Program
// include OpenGL libraries
void main()
{   

glutDisplayFunc(myDisplay);   // register the redraw function 
glutReshapeFunc(myReshape);   // register the reshape 
function 
glutMouseFunc(myMouse);  // register the mouse action 
function
glutMotionFunc(myMotionFunc); // register the mouse motion 
function 
glutKeyboardFunc(myKeyboard); // register the keyboard action 
function
…perhaps initialize other things…
glutMainLoop(); // enter the unending main loop

}
…all of the callback functions are defined here



Callback Functions
• glutDisplayFunc(myDisplay);

– (Re)draws screen when window opened or another 
window moved off it.

• glutReshapeFunc(myReshape);
– Reports new window width and height for reshaped 

window.  (Moving a window does not produce a 
reshape event.)

• glutIdleFunc(myIdle);
– when nothing else is going on, simply redraws display 

using void myIdle() {glutPostRedisplay();}



Callback Functions (2)

• glutMouseFunc(myMouse);
– Handles mouse button presses. Knows 

mouse location and nature of button (up or 
down and which button). 

• glutMotionFunc(myMotionFunc);
– Handles case when the mouse is moved with 

one or more mouse buttons pressed.



Callback Functions (3)
• glutPassiveMotionFunc(myPassiveMotionFunc)

– Handles case where mouse enters the window 
with no buttons pressed.

• glutKeyboardFunc(myKeyboardFunc);
– Handles key presses and releases. Knows which 

key was pressed and mouse location.
• glutMainLoop()

– Runs forever waiting for an event.  When one occurs, 
it is handled by the appropriate callback function.



Libraries to Include
• GL, for which the commands begin with GL;
• GLUT, the GL Utility Toolkit, opens windows, 

develops menus, and manages events. 
• GLU, the GL Utility Library, which provides high 

level routines to handle complex mathematical 
and drawing operations. 

• GLUI, the User Interface Library, which is 
completely integrated with the GLUT library.
– The GLUT functions must be available for GLUI to 

operate properly.  
– GLUI provides sophisticated controls and menus to 

OpenGL applications.  



A GL Program to Open a Window 
// appropriate #includes go here – see Appendix 1
void main(int argc, char** argv)
{    

glutInit(&argc, argv);     // initialize the toolkit
glutInitDisplayMode(GLUT_SINGLE |          

GLUT_RGB);                 // set the display mode
glutInitWindowSize(640,480); // set window size
glutInitWindowPosition(100, 150); 

// set window upper left corner position on screen
glutCreateWindow("my first attempt"); 

// open the screen window (Title: my first attempt)
// continued next slide



Part 2 of Window Program 
// register the callback functions

glutDisplayFunc(myDisplay); 
glutReshapeFunc(myReshape); 
glutMouseFunc(myMouse);     
glutKeyboardFunc(myKeyboard); 
myInit(); // additional initializations as necessary
glutMainLoop(); // go into a perpetual loop

}
• Terminate program by closing window(s) it is 

using.



What the Code Does

• glutInit (&argc, argv) initializes Open-GL 
Toolkit

• glutInitDisplayMode (GLUT_SINGLE | 
GLUT_RGB) allocates a single display 
buffer and uses colors to draw

• glutInitWindowSize (640, 480) makes the 
window 640 pixels wide by 480 pixels high



What the Code Does (2)

• glutInitWindowPosition (100, 150) puts 
upper left window corner at position 100 
pixels from left edge and 150 pixels down 
from top edge

• glutCreateWindow (“my first attempt”) 
opens and displays the window with the 
title “my first attempt”

• Remaining functions register callbacks 



What the Code Does (3)

• The call-back functions you write are 
registered, and then the program enters 
an endless loop, waiting for events to 
occur.

• When an event occurs, GL calls the 
relevant handler function.



Effect of Program



Drawing Dots in OpenGL
• We start with a coordinate system based 

on the window just created: 0 to 679 in x 
and 0 to 479 in y.

• OpenGL drawing is based on vertices 
(corners). To draw an object in OpenGL, 
you pass it a list of vertices.
– The list starts with glBegin(arg); and ends with 

glEnd();
– Arg determines what is drawn.
– glEnd() sends drawing data down the 

OpenGL pipeline.



Example

• glBegin (GL_POINTS);
– glVertex2i (100, 50);
– glVertex2i (100, 130);
– glVertex2i (150, 130);

• glEnd();
• GL_POINTS is constant built-into Open-

GL (also GL_LINES, GL_POLYGON, …)
• Complete code to draw the 3 dots is in Fig. 

2.11.



Display for Dots 



What Code Does: GL Function 
Construction



Example of Construction

• glVertex2i (…) takes integer values
• glVertex2d (…) takes floating point values

• OpenGL has its own data types to make 
graphics device-independent
– Use these types instead of standard ones



Open-GL Data Types
suffix data type C/C++ type OpenGL type name 

b 8-bit integer signed char GLbyte

s 16-bit integer Short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit float Float GLfloat, GLclampf

d 64-bit float Double GLdouble,GLclampd

ub 8-bit unsigned 
number

unsigned char GLubyte,GLboolean

us 16-bit unsigned 
number

unsigned short GLushort

ui 32-bit unsigned 
number

unsigned int or 
unsigned long

GLuint,Glenum,GLbitfield



Setting Drawing Colors in GL

• glColor3f(red, green, blue);
// set drawing color
– glColor3f(1.0, 0.0, 0.0); // red 
– glColor3f(0.0, 1.0, 0.0); // green 
– glColor3f(0.0, 0.0, 1.0); // blue 
– glColor3f(0.0, 0.0, 0.0); // black 
– glColor3f(1.0, 1.0, 1.0); // bright white 
– glColor3f(1.0, 1.0, 0.0); // bright yellow 
– glColor3f(1.0, 0.0, 1.0); // magenta



Setting Background Color in GL

• glClearColor (red, green, blue, alpha);
– Sets background color.
– Alpha is degree of transparency; use 0.0 for 

now.
• glClear(GL_COLOR_BUFFER_BIT);

– clears window to background color 



Setting Up a Coordinate System
void myInit(void)
{

glMatrixMode(GL_PROJECTION); 
glLoadIdentity();
gluOrtho2D(0, 640.0, 0, 480.0);

}
// sets up coordinate system for window from 

(0,0) to (679, 479)



Drawing Lines
• glBegin (GL_LINES);  //draws one line

– glVertex2i (40, 100);    // between 2 vertices
– glVertex2i (202, 96);

• glEnd ();
• glFlush();
• If more than two vertices are specified 

between glBegin(GL_LINES) and glEnd() 
they are taken in pairs, and a separate line 
is drawn between each pair. 



Line Attributes
• Color, thickness, stippling.
• glColor3f() sets color. 
• glLineWidth(4.0) sets thickness.  The default 

thickness is 1.0. 

a). thin lines      b). thick lines     c). stippled lines



Setting Line Parameters

• Polylines and Polygons: lists of vertices.
• Polygons are closed (right); polylines need 

not be closed (left).



Polyline/Polygon Drawing

• glBegin (GL_LINE_STRIP); 
• // GL_LINE_LOOP to close polyline (make 

it a polygon)
– // glVertex2i () calls go here

• glEnd ();
• glFlush ();
• A GL_LINE_LOOP cannot be filled with 

color



Examples

• Drawing line graphs: connect each pair of 
(x, f(x)) values

• Must scale and shift



Examples (2)

• Drawing polyline from vertices in a file
– # polylines
– # vertices in first polyline
– Coordinates of vertices, x y, one pair per line
– Repeat last 2 lines as necessary

• File for dinosaur available from Web site
• Code to draw polylines/polygons in Fig. 

2.24.



Examples (3)



Examples (4)

• Parameterizing Drawings: allows making 
them different sizes and aspect ratios

• Code for a parameterized house is in Fig. 
2.27.



Examples (5)



Examples (6)

• Polyline Drawing
• Code to set up an array of vertices is in 

Fig. 2.29.
• Code to draw the polyline is in Fig. 2.30.



Relative Line Drawing
• Requires keeping track of current position on 

screen (CP).
• moveTo(x, y); set CP to (x, y)
• lineTo(x, y); draw a line from CP to (x, y), and 

then update CP to (x, y).
• Code is in Fig. 2.31.
• Caution! CP is a global variable, and therefore 

vulnerable to tampering from instructions at 
other points in your program.



Drawing Aligned Rectangles

• glRecti (GLint x1, GLint y1, GLint x2, GLint 
y2); // opposite corners; filled with current 
color; later rectangles are drawn on top of 
previous ones



Aspect Ratio of Aligned Rectangles

• Aspect ratio = width/height



Filling Polygons with Color

• Polygons must be convex: any line from 
one boundary to another lies inside the 
polygon; below, only D, E, F are convex



Filling Polygons with Color (2)

• glBegin (GL_POLYGON);
– //glVertex2f (…); calls go here

• glEnd ();
• Polygon is filled with the current drawing 

color



Other Graphics Primitives

• GL_TRIANGLES, GL_TRIANGLE_STRIP, 
GL_TRIANGLE_FAN

• GL_QUADS, GL_QUAD_STRIP



Simple User Interaction with Mouse 
and Keyboard

• Register functions:
– glutMouseFunc (myMouse);
– glutKeyboardFunc (myKeyboard);

• Write the function(s)
• NOTE that any drawing you do when you 

use these functions must be done IN the 
mouse or keyboard function (or in a 
function called from within mouse or 
keyboard callback functions).



Example Mouse Function

• void myMouse(int button, int state, int x, int 
y);

• Button is one of GLUT_LEFT_BUTTON, 
GLUT_MIDDLE_BUTTON, or 
GLUT_RIGHT_BUTTON.

• State is GLUT_UP or GLUT_DOWN.
• X and y are mouse position at the time of 

the event.



Example Mouse Function (2)
• The x value is the number of pixels from the left 

of the window.
• The y value is the number of pixels down from 

the top of the window.
• In order to see the effects of some activity of the 

mouse or keyboard, the mouse or keyboard 
handler must call either myDisplay() or 
glutPostRedisplay().

• Code for an example myMouse() is in Fig. 2.40.



Polyline Control with Mouse

• Example use:



Code for Mouse-controlled Polyline



Using Mouse Motion Functions
• glutMotionFunc(myMovedMouse); // 

moved with button held down
• glutPassiveMotionFunc(myMovedMouse);

// moved with buttons up
• myMovedMouse(int x, int y); x and y are 

the position of the mouse when the event 
occurred.

• Code for drawing rubber rectangles using 
these functions is in Fig. 2.41.



Example Keyboard Function
void myKeyboard(unsigned char theKey, int 

mouseX, int mouseY)
{

GLint x = mouseX;
GLint y = screenHeight - mouseY; // flip y value    
switch(theKey)
{case ‘p’: drawDot(x, y); break;

// draw dot at mouse position
case ‘E’: exit(-1); //terminate the program
default: break; // do nothing

}
}



Example Keyboard Function (2)

• Parameters to the function will always be 
(unsigned char key, int mouseX, int 
mouseY).

• The y coordinate needs to be flipped by 
subtracting it from screenHeight.

• Body is a switch with cases to handle 
active keys (key value is ASCII code).

• Remember to end each case with a break!



Using Menus

• Both GLUT and GLUI make menus 
available.

• GLUT menus are simple, and GLUI menus 
are more powerful.

• We will build a single menu that will allow 
the user to change the color of a triangle, 
which is undulating back and forth as the 
application proceeds. 



GLUT Menu Callback Function
• Int glutCreateMenu(myMenu); returns menu ID
• void myMenu(int num); //handles choice num
• void glutAddMenuEntry(char* name, int value); // 

value used in myMenu switch to handle choice
• void glutAttachMenu(int button); // one of 

GLUT_RIGHT_BUTTON, 
GLUT_MIDDLE_BUTTON, or 
GLUT_LEFT_BUTTON
– Usually GLUT_RIGHT_BUTTON



GLUT subMenus
• Create a subMenu first, using menu commands, 

then add it to main menu.
– A submenu pops up when a main menu item is 

selected.
• glutAddSubMenu (char* name, int menuID); // 

menuID is the value returned by glutCreateMenu 
when the submenu was created

• Complete code for a GLUT Menu application is 
in Fig. 2.44.  (No submenus are used.)



GLUI Interfaces and Menus



GLUI Interfaces

• An example program illustrating how to 
use GLUI interface options is available on 
book web site.

• Most of the work has been done for you; 
you may cut and paste from the example 
programs in the GLUI distribution. 


